
Journal of Petroleum Science and Engineering 96–97 (2012) 73–78
Contents lists available at SciVerse ScienceDirect
Journal of Petroleum Science and Engineering
0920-41

http://d

n Tel.:

E-m
journal homepage: www.elsevier.com/locate/petrol
Mixed convection boundary layer flow along a stretching cylinder
in porous medium
Swati Mukhopadhyay n

Department of Mathematics, The University of Burdwan, Burdwan 713104, W.B., India
a r t i c l e i n f o

Article history:

Received 1 June 2011

Accepted 13 August 2012
Available online 29 August 2012

Keywords:

mixed convection

boundary layer

stretching cylinder

porous medium

heat transfer
05/$ - see front matter & 2012 Elsevier B.V. A

x.doi.org/10.1016/j.petrol.2012.08.006

þ91 342 255 7741; fax: þ91 342 253 0452.

ail address: swati_bumath@yahoo.co.in
a b s t r a c t

This paper presents an axi-symmetric laminar boundary layer mixed convection flow of a viscous

incompressible fluid and heat transfer towards a stretching cylinder embedded in porous medium.

Variable surface temperature is assumed. The partial differential equations corresponding to the

momentum equations are converted into highly non-linear ordinary differential equations with the

help of similarity transformations. Numerical solutions of these equations are obtained by shooting

method. It is found that the velocity decreases but the temperature increases with increasing

permeability parameter. With the increasing values of mixed convection parameter, velocity is found

to increase for buoyancy aided flow but opposite nature is noted for buoyancy opposed flow. The skin

friction as well as the heat transfer rate at the surface is larger for a cylinder compared to a flat plate.

Thermal boundary layer thickness decreases with increasing Prandtl number.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Flow and heat transfer due to a stretching cylinder or a flat
plate in a quiescent or moving fluid is important in number of
industrial manufacturing processes that includes both metal and
polymer sheets. It is worth mentioning that there are several
practical applications in which significant temperature differ-
ences between the body-surface and the ambient fluid exist.
The temperature differences cause density gradients in the fluid
medium and free convection effects become more important in
presence of gravitational force. There arise some situations where
the stretching cylinder moves vertically in the cooling liquid. In
this situation, the fluid flow and the heat transfer characteristics
are determined by two mechanisms namely, the motion of
stretching cylinder and the buoyancy force. The thermal buoy-
ancy generated due to heating/cooling of a vertically moving
stretching cylinder has a large impact on the flow and heat
transfer characteristics. Convection heat transfer and fluid flow
through porous medium is a phenomenon of great interest from
both theoretical and practical point of view because of
its applications in many engineering and geophysical fields such
as geothermal and petroleum resources, solid matrix heat
exchanges, thermal insulation drying of porous solids, enhanced
oil recovery, cooling of nuclear reactors and other practical
ll rights reserved.
interesting designs (Rabadi and Hamdan, 2000; Mukhopadhyay
and Layek, 2009; Mukhopadhyay et al., 2012).

Flow over cylinders are considered to be two-dimensional if
the body radius is large compared to the boundary layer thick-
ness. On the other hand for a thin or slender cylinder, the radius
of the cylinder may be of the same order as that of the boundary
layer thickness. Therefore, the flow may be considered as axi-
symmetric instead of two-dimensional (Datta et al., 2006;
Elbarbary and Elgazery, 2005; Kumari and Nath, 2004). The study
of steady flow in a viscous and incompressible fluid outside of a
stretching hollow cylinder in an ambient fluid at rest has been
done by Wang (1988). The effect of slot suction/injection over a
thin cylinder as studied by Datta et al. (2006) and Kumari and
Nath (2004) may be useful in the cooling of nuclear reactors
during emergency shutdown, where a part of the surface can be
cooled by injecting a coolant (Ishak et al., 2008). Lin and Shih
(1980, 1981) considered the laminar boundary layer and heat
transfer along horizontally and vertically moving cylinders with
constant velocity and found that the similarity solutions could not
be obtained due to the curvature effect of the cylinder. Ishak and
Nazar (2009) showed that the similarity solutions may be
obtained by assuming that the cylinder is stretched with linear
velocity in the axial direction and claimed that their study may be
regarded as the extension of the papers by Grubka and Bobba
(1985) and Ali (1994), from a stretching sheet to a stretching
cylinder.

The study of hydrodynamic flow and heat transfer in porous
medium becomes much more interesting due to its vast applica-
tions on the boundary layer flow control. Heat removal from
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nuclear fuel debris, underground disposal of radioactive waste
material, storage of food stuffs and exothermic and/or endothermic
chemical reactions and dissociating fluids in the packed-bed reactors
etc. are some porous media applications. It is well known that
Darcy’s law is an empirical formula relating the pressure gradient,
the bulk viscous fluid resistance and the gravitational force for a
forced convective flow in a porous medium. Deviations from the
Darcy’s law occur when the Reynolds number based on the pore
diameter is within the range of 1–10 (Ishak et al., 2006).

No attempt has been made yet to analyze the flow and thermal
characteristics of mixed convection boundary layer axi-symmetric
flow and heat transfer along a stretching cylinder in porous medium.
Therefore an attempt is made to study the steady mixed convection
flow and heat transfer past a stretching cylinder placed in a fluid-
saturated porous medium using the Darcy model. Using similarity
transformation, a third order ordinary differential equation corre-
sponding to the momentum equation and a second order ordinary
differential equation corresponding to heat equation are derived.
Using shooting method numerical calculations up to desired level of
accuracy were carried out for different values of dimensionless
parameters of the problem under consideration for the purpose of
illustrating the results graphically. The results obtained are then
compared with those of Grubka and Bobba (1985), Ali (1994) and
Ishak and Nazar (2009) who reported the results for some special
case of the present study. The analysis of the results obtained shows
that the flow field is influenced appreciably by the permeability
parameter. Estimations of skin friction and heat transfer coefficients
which are very important from the industrial application point of
view are also presented in the analysis. It is hoped that the results
obtained will not only provide useful information for applications,
but also serve as a complement to the previous studies.
2. Equations of motion

Consider the steady axi-symmetric mixed convection flow of
an incompressible viscous fluid along a vertical stretching cylin-
der in porous medium (see Fig. 1). The continuity, momentum
and energy equations governing such type of flow are written as
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Fig. 1. Sketch of physical flow problem.
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where u and u are the components of velocity respectively in the
x and r directions, n¼m/r is the kinematic viscosity, r is the fluid
density, m is the coefficient of fluid viscosity, K is the permeability
of the medium, k is the thermal diffusivity of the fluid, T is the
fluid temperature, b is the volumetric coefficient of thermal
expansion, g is the gravity field, TN is the ambient temperature.

2.1. Boundary conditions

The appropriate boundary conditions for the problem are
given by

u¼UðxÞ, u¼ 0, T ¼ TwðxÞ at r¼ R, ð4Þ

u-0, T-T1, as r-1 ð5Þ

Here U(x)¼U0(x/L) is the stretching velocity, Tw(x)¼TNþT0(x/L)N

is the prescribed surface temperature (for forced convection case),
N is the temperature exponent, N¼1 is considered for mixed
convection case. U0, T0 are the reference velocity and temperature
respectively, L is the characteristic length.

2.2. Method of solution

The continuity equation is automatically satisfied by the
introduction of stream function c as

u¼
1

r
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1
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Introducing the similarity variables as
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, c¼ ðUnxÞ1=2Rf ðZÞ, yðZÞ ¼ T�T1
Tw�T1

ð6Þ

and upon substitution of (6) in Eqs. (2)–(5) the governing
equations and the boundary conditions reduce to

ð1þ2MZÞf ===þ2Mf ==þ f f ==�f =2
�k1f =þly¼ 0, ð7Þ

ð1þ2MZÞy==þ2My=þPrðfy=�f =yÞ ¼ 0 ð8Þ

f = ¼ 1, f ¼ 0, y¼ 1, at Z¼ 0 ð9Þ

and

f =-0, y-0 as Z-1 ð10Þ

where the prime denotes differentiation with respect to Z,
k1¼nL/U0 K is the permeability parameter of the porous medium,
M¼(nL/U0R2)1/2 is the curvature parameter, l¼ gbT0L=U2

0 is the
mixed convection parameter. The case of non-porous medium is
recovered for k1¼0. k�1

1 will reflect the effect of Darcian flow on the
present problem.

One can note that if M¼0 (i.e., R-N), the problem under
consideration (with k1¼0, l¼0) reduces to the boundary layer flow
along a stretching flat plate considered by Ali (1994), with m¼1 in
that paper. Moreover, when M¼0 (stretching flat plate) subjected to
(9) with k1¼0 (i.e., for non-porous medium), l¼0 (i.e., for forced
convection), the analytical solutions of Eqs. (7) and (8) are given by
Crane (1970) and Grubka and Bobba (1985), respectively.
3. Numerical method for solution

A number of methods can be used to solve linear boundary-
value problems. Method of differences works reasonably well in
such cases. Other methods attempt to obtain linearly independent
solutions and to combine them in such a way as to satisfy the



Table 1

Values of [�y/(0)] for several values of temperature exponent N for forced

convection (l¼0) in a plate (M¼0) in non-porous medium (k1¼0) and Pr¼1.

N Ishak and Nazar

(2009)

Grubka and Bobba

(1985)

Ali

(1994)

Present

study

0 0.5820 0.5820 0.5801 0.5821

1 1.0000 1.0000 0.9961 1.0000

2 1.3333 1.3333 1.3269 1.3332
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Fig. 2. (a) Variation of velocity f /(Z) with Z for several values of curvature

parameter M of the stretching cylinder. (b) Variation of temperature y(Z) with Z
for several values of curvature parameter M of the stretching cylinder.
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boundary conditions. But these methods cannot be used in case of
nonlinear equations. Difference method can be adapted for such
problems but it requires guessing at a tentative solution and then
improving this by an iterative process. The shooting method, used
in this problem, can be used for both linear and nonlinear
problems. Though there is no guarantee of convergence, but the
method is easy to apply and when it does converge, it is usually
more efficient than other methods.

In case of applying the initial-value methods to solve a second
order boundary-value problem y//(x)¼y(x) subjected to y(0)¼0,
y(1)¼1 we must know y(0) and y/(0). As y/(0) is not prescribed,
we consider it as a parameter, say a, which must be determined
so that the resulting solutions yield the prescribed value y(1) to
some desired accuracy. We therefore guess at the initial slope and
an iterative procedure is set up for converging to the correct
slope. A normally better approximation to a can now be obtained
by linear interpolation formula

a2 ¼ a0þða1�a0Þ
yð1Þ�yða0;1Þ

yða1;1Þ�yða0;1Þ

where a0,a1 are two guesses at the initial slope y/(0) and y(a0;1),
y(a1;1) are values of y at x¼1. We now integrate the differential
equation using the initial values y(0)¼0, y/(0)¼a2 to obtain
y(a2;1). Using linear interpolation based on a1, a2 we can obtain
a next approximation a3. This process is repeated until conver-
gence is obtained. The rapidity of convergence depends upon the
good initial guesses (Conte and Boor, 1981).

Using the above procedure, Eqs. (7) and (8) along with
boundary conditions (9) and (10) are solved by converting them
to an initial value problem. We set

f = ¼ z, z= ¼ p, p= ¼ ½z2þk1z�f p�2Mp�ly�=ð1þ2MZÞ ð11Þ

y= ¼ q, q= ¼�½Prðf q�zyÞþ2Mq�=ðð1þ2MZÞ ð12Þ

with the boundary conditions

f ð0Þ ¼ 0, f =ð0Þ ¼ 1, yð0Þ ¼ 1 ð13Þ

In order to integrate (11) and (12) as initial value problems
one requires a value for p(0) i.e. f //(0) and a value for q(0) i.e. y/(0)
but no such values are given at the boundary. The suitable guess
values for f //(0) and y/(0) are chosen and then integration is
carried out. Comparing the calculated values for f/ and y at Z¼10
(say) with the given boundary conditions f/(10)¼0 and y(10)¼0
and adjusting the estimated values, f//(0) and y/(0), a better
approximation for the solution is given.

Taking the series of values for f//(0) and y/(0) and applying the
fourth order classical Runge–Kutta method with step-size
h¼0.01, the above procedure is repeated until the results up to
the desired degree of accuracy (10�5) are obtained.
4. Results and discussions

For the verification of accuracy of the applied numerical scheme,
a comparison of the present results for forced convection case (l¼0)
corresponding to the heat transfer coefficient [�y/(0)] for k1¼0 (i.e.,
in case of non-porous medium) and M¼0 (i.e., for stretching flat
plate) with the available published results of Ishak and Nazar (2009),
Grubka and Bobba (1985) and Ali (1994) is made and presented in
Table 1. The results are found in excellent agreement.

In order to analyse the results, numerical computation has
been carried out using the method described in the previous
section for various values of the curvature parameter (M), mixed
convection parameter (l), permeability parameter (k1) and
Prandtl number (Pr). For illustrations of the results, numerical
values are plotted in the Fig. 2(a) to Fig. 7(b).
Let us first concentrate on the effects of curvature parameter M

on velocity distribution in presence of porous medium. In
Fig. 2(a), horizontal velocity profiles are shown for different
values of M. The horizontal velocity curves show that the rate of
transport decreases with the increasing distance (Z) of the sheet.
In all cases the velocity vanishes at some large distance from the
sheet (at Z¼10). The velocity increases with increasing values of
M. The velocity gradient at the surface is larger for larger values of
M, which produces larger skin friction coefficient.

Effects of curvature parameter on the temperature distribution
are presented in Fig. 2(b). Temperature is found to decrease with the
increasing curvature parameter M. The thermal boundary layer
thickness decreases as M increases, which implies increase in the
wall temperature gradient and in turn the surface heat transfer rate
increases. Hence, the local Nusselt number Nux, defined as
Nux ¼ ð�xð@T=@rÞr ¼ RÞ=ðTw�T1Þ¼�Re1=2

x y=ð0Þ, Rex ¼Ux=v being
the local Reynolds number, increases as M increases.

Fig. 3(a)–(d) displays the effects of the mixed convection
parameter on velocity, shear stress, temperature and temperature
gradient for flat plate and stretching cylinder. Fig. 3(a) and (b)
demonstrate the effects of mixed convection parameter (l) on
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velocity and shear stress profiles respectively for a stretching flat
plate (i.e., for M¼0) and a stretching cylinder (for M¼0.25). With
the increasing l, the horizontal velocity is found to increase for
buoyancy aided flow (l40) but decreases for buoyancy opposed
flow (lo0) [Fig. 3(a) and (b)]. It is noted that l has a substantial
effect on the solutions. Also, with the increasing values of mixed
convection parameter l, the shear stress f//(Z) increases for
buoyancy opposed flow but decreases in case of buoyancy aided
flow. l¼0 corresponds to the forced convection case. For l40,
there is a favourable pressure gradient due to the buoyancy
forces, which results in the flow being accelerated.

Physically l40 means heating of the fluid or cooling
of the surface (assisting flow), lo0 means cooling of the fluid
or heating of the surface (opposing flow). Also, an increase in
the value of l can lead to an increase in the temperature
difference Tw�TN.
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This leads to an enhancement of the velocity due to the enhanced
convection currents and thus an increase in the boundary layer
thickness.
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Variation of temperature y(Z) and temperature gradient y/(Z)
with Z for several values of mixed convection parameter l for flat
plate are shown in Fig. 3(c). Temperature decreases with increas-
ing l for buoyancy aided flow but increases in case of buoyancy
opposed flow. Opposite behaviour is noted for temperature
gradient. Fig. 3(d) presents the nature of temperature profiles
for various values of l in case of stretching cylinder. With
increasing l temperature is found to decrease in the buoyancy
aided flow and temperature increases with l in buoyancy
opposed flow. An increase in the value of mixed convection
parameter l results in a decrease in the thermal boundary layer
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thickness and this results in an increase in the magnitude of the
wall temperature gradient. This in turn produces an increase in
the surface heat transfer rate.

Now the velocity profiles are presented for the variation of
permeability parameter for flat plate and stretching cylinder.
Fig. 4(a) and (c) demonstrate the effects of permeability parameter
(k1) for a stretching flat plate (i.e., for M¼0) on velocity and
temperature respectively. With the increasing k1, the horizontal
velocity is found to decrease [Fig. 4(a)] but the temperature
increases in this case [Fig. 4(c)]. This feature prevails up to certain
heights and then the process is slowed down. It is noted that k1 has
a substantial effect on the solutions. It is obvious that the presence
of porous medium causes higher restriction to the fluid, which
reduces the fluid velocity [Fig. 4(a)] and enhances the temperature
[Fig. 4(c)]. The porous medium presents resistance to the flow, thus,
the flow becomes slower. Therefore, as the inverse Darcy number
(k�1

1 ) increases, the resistance due to the porous medium increases
and the surface velocity gradient increases. In this case, skin friction
increases monotonically. k1¼0 corresponds to the case of non-
porous medium. Fig. 4(b) and (d) present the effects of permeability
parameter k1 on velocity and temperature for the stretching cylinder
(M¼1). Here also velocity decreases with k1 whereas the tempera-
ture increases with increasing k1 [Fig. 4(d)].

It is noted that temperature decreases with increasing Pr. An
increase in Prandtl number reduces the thermal boundary layer
thickness. It is also observed that the effects of Pr are much
more prominent for flat plate [Fig. 5(a)] compared to stretching
cylinder [Fig. 5(b)]. Prandtl number signifies the ratio of momen-
tum diffusivity to thermal diffusivity. Fluids with lower Prandtl
number will possess higher thermal conductivities (and thicker
thermal boundary layer structures) so that heat can diffuse from
the wall faster than for higher Pr fluids (thinner boundary layers).
Hence Prandtl number can be used to increase the rate of cooling
in conducting flows.

Fig. 6(a) and (b) present the behaviour of skin friction and heat
transfer coefficients with the permeability parameter k1 of the porous
medium for three values of curvature parameter. Magnitude of the
skin friction coefficient increases with increasing permeability para-
meter k1 and also with the curvature parameter M which also
supports the earlier findings in Fig. 2(a). These features are also
exhibited in Fig. 7(a). From the figure it is very clear that shear stress
at the wall is negative here. Physically, negative sign of f//(0) implies
that surface exerts a dragging force on the fluid and positive sign
implies the opposite. This is consistent with the present case as a
stretching cylinder which induces the flow that is considered here.
From Fig. 6(b) it is very clear that the magnitude of heat transfer
coefficient decreases with permeability parameter k1 but increases
with the curvature parameter M which is consistent with the findings
in Fig. 2(b). Fig. 7(b) also supports these features. The skin-friction
coefficient increases with increasing mixed convection parameter l
[Fig. 6(c)].
5. Conclusions

The present study gives the numerical solutions for steady
boundary layer mixed convection flow and heat transfer along a
stretching cylinder embedded in porous medium. The rate of
transport is considerably reduced with increasing values of
curvature parameter. The results pertaining to the present study
indicate that due to increasing permeability parameter, velocity
decreases whereas the temperature increases. The surface shear
stress and the heat transfer rate at the surface increase as the
curvature parameter increases. Fluid velocity is found to increase
with increasing mixed convection parameter for buoyancy aided
flow but it decreases for buoyancy opposed flow. Prandtl number
can be used to increase the rate of cooling.

In fine, it can be concluded that the problem resembles the
conditions experienced around well bores in oil reservoirs and
therefore is useful in petroleum science & engineering.
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